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ABSTRACT

Motivation: Drug effects are mainly caused by the interactions
between drug molecules and their target proteins including primary
targets and off-targets. Identification of the molecular mechanisms
behind overall drug–target interactions is crucial in the drug design
process.
Results: We develop a classifier-based approach to identify
chemogenomic features (the underlying associations between drug
chemical substructures and protein domains) that are involved in
drug–target interaction networks. We propose a novel algorithm
for extracting informative chemogenomic features by using L1

regularized classifiers over the tensor product space of possible
drug–target pairs. It is shown that the proposed method can
extract a very limited number of chemogenomic features without
loosing the performance of predicting drug–target interactions and
the extracted features are biologically meaningful. The extracted
substructure–domain association network enables us to suggest
ligand chemical fragments specific for each protein domain and
ligand core substructures important for a wide range of protein
families.
Availability: Softwares are available at the supplemental website.
Contact: yamanishi@bioreg.kyushu-u.ac.jp
Supplementary Information: Datasets and all results are available
at http://cbio.ensmp.fr/˜yyamanishi/l1binary/.

1 INTRODUCTION
Drug phenotypic effects are caused by the interactions between
drug molecules and their target proteins including their primary
targets and off-targets (Blagg, 2006; Whitebread et al., 2005).
Polypharmacology, the idea that drug phenotypic effects are not
due only to its primary target, but rather to its whole spectrum
of interactions, tends to become a new paradigm in drug design.
It is important to identify the molecular mechanisms behind
overall drug–target interactions or more generally compound–
protein interactions, leading to many applications at different
levels of the drug design process. There is a hypothesis that
polypharmacology is strongly involved in both drug chemical
substructures and protein functional sites, so there is a strong
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incentive to develop new methods to explore the association between
drug chemical substructures and protein functional sites in terms of
drug–target interactions.

Docking (Kolb et al., 2009) or ligand–based approach (e.g.
QSAR) have been proposed to analyze and predict interactions
with respect to a single protein, so these methods cannot be
applied to mine ligand–protein pairs across many different proteins.
Chemogenomics is an emerging research area that attempts to
associate the chemical space of possible ligands with the genomic
space of possible proteins (Dobson, 2004; Kanehisa et al., 2006;
Stockwell, 2000). Following this principle, several statistical
methods have been proposed to predict drug–target or ligand–
protein interactions on a large scale. (Faulon et al., 2008; Jacob
and Vert, 2008; Keiser et al., 2009; Li et al., 2011; Yabuuchi et al.,
2011; Yamanishi et al., 2008; Yang et al., 2009). These methods
are purely predictive and do not provide any further understanding
of molecular mechanisms behind ligand–protein interactions.
Drug–target interactions are due to drug chemical substructures
and protein functional sites. Beyond the ligand–protein interaction
prediction problem, a variety of methods have been proposed
to investigate the correlation between chemical substructures,
biological activities and phenotypic effects (Han et al., 2008;
Klekota and Roth, 2008; Pauwels et al., 2011; Shigemizu et al.,
2009). Several methods based on binding pockets comparison
have been proposed (Hoffmann et al., 2010; Morris et al., 2005;
Najmanovich et al., 2008), but they require the knowledge of protein
3D structures, which is not genome-wide available. However, most
previous works have been performed from the viewpoint of either
chemical substructures or protein functional sites.

One of the most challenging issues in recent chemogenomic
research is to identify the underlying associations between drug
chemical substructures and protein functional sites which are
involved in drug–target interaction networks. Recently, a variant
of sparse canonical correspondence analysis (SCCA) has been
proposed to extract sets of chemical substructures and protein
domains governing drug–target interactions (Yamanishi et al., 2011),
but the variation of detectable protein domains is very limited. The
use of both graph mining and sequence mining has been proposed to
extract drug substructures and protein subsequences which tend to
appear in known drug–target interactions (Takigawa et al., 2011).
However, the size of extracted subsequences is very small (e.g.
two or three amino acids), which makes biological interpretation
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difficult, and any prediction framework for new interactions based
on the extracted features was not provided.

In this article, we develop a classifier-based approach to identify
chemogenomic features (the underlying associations between drug
chemical substructures and protein domains) which are strongly
involved in drug–target interaction networks. We propose a novel
algorithm for extracting informative chemogenomic features by
using L1 regularized classifiers over the tensor product space of
possible drug–target pairs. In the results, we show that the proposed
method can extract a very limited number of chemogenomic
features without loosing the performance of predicting drug–target
interactions. We underline that the extracted chemogenomic features
are biologically meaningful and discuss how the method can help
the drug development process. The extracted substructure–domain
association network enables us to suggest ligand chemical fragments
specific for each protein domain and ligand core substructures
important for a wide range of protein families.

2 MATERIALS
Drug–target interactions involving human proteins were obtained
from the DrugBank database (Wishart et al., 2006). Target proteins
belong to many different classes such as enzymes, ion channels,
G protein-coupled receptors (GPCRs) or nuclear receptors. The
dataset consists of 4809 drug–target interactions involving 1862
drugs and 1554 target proteins. The set of interactions is used as
gold standard data. This is the same drug–target interaction data
used in the previous study (Yamanishi et al., 2011).

Chemical structures of drugs were encoded by a chemical
fingerprint corresponding to 881 chemical substructures defined in
the PubChem database (Chen et al., 2009). Chemically identical
drugs with the same structures (duplicates) are removed, so
structures of all drugs in the above interaction data are unique. Each
drug was represented by an 881 dimensional binary vector whose
elements encode for the presence or absence of each PubChem
substructure by 1 or 0, respectively. Among the 881 substructures
used to represent the chemical structures, 663 are actually used,
because 218 do not appear in our drug set.

Genomic information about target proteins was obtained from
the UniProt database (Consortium, 2010), and associated protein
domains were obtained from the PFAM database (Finn et al., 2008).
Target proteins in our dataset were associated with 876 PFAM
domains. Each target protein was represented by a 876 dimensional
binary vector whose elements encode for the presence or absence of
each of the retained PFAM domain by 1 or 0, respectively.

3 METHODS
We solve the typical in silico chemogenomics problem as the
following machine learning problem: given a collection of n drug–
target pairs (C1,P1),...,(Cn,Pn), known to interact or not, estimate
a function f (C,P) that would predict whether a compound C
interacts with a protein P. In addition, our task includes extracting
features which effectively contribute to the prediction. In this
section, we propose a general approach to solve these problems in
a unified framework.

3.1 Model
Linear model is a useful tool for classification and regression.
Generally, a linear model represents each example E by a feature

vector representation �(E)∈�D and then estimates a linear function
f (E)=wT�(E) whose sign is used to predict whether the example
E is classified into positive or negative. The weight vector w∈�D

is estimated based on its ability to correctly predict the classes
of examples in the training set. In addition to its classification
ability, linear models have an interpretability of features. Since each
element of a feature vector �(E) corresponds to an element of its
weight vector w, we can extract effective features contributing to
the prediction by sorting elements of �(E) according to the values
of the corresponding elements of w.

The prediction of drug–target interactions or compound–protein
interactions is more complicated because the dataset consist of drug–
target pairs or compound–protein pairs. Let C be a drug (or drug
candidate compound) and P be a target (or target candidate protein).
To apply the previous machine learning approach to this problem,
we need to represent a pair of a compound C and a protein P by a
feature vector �(C,P) and then estimate a linear function f (C,P)=
wT�(C,P) whose sign can be used to predict whether a pair of C
and P interacts or not. The weight vector w is estimated based on
its ability to correctly predict interactions of drug–target pairs or
compound-protein pairs.

3.2 Vector representation of drug–target pairs
We propose to represent a compound–protein pair by a feature vector
using the tensor product of two feature vectors. The representation is
similar to the representations in (Jacob and Vert, 2008) and (Faulon
et al., 2008).

The fingerprint of a compound C is represented as D-dimensional
binary vector: �(C)= (c1,c2,...,cD)T where ci ∈{0,1},i=1,...,D.
A fingerprint of a protein P is represented as D′-dimensional
binary vector as well: �(P)= (p1,p2,...,pD′ )T where pi ∈{0,1},i=
1,...,D′. We define a fingerprint of a drug–target pair as the tensor
product of �(C) and �(P) as follows:

�(C,P)=�(C)⊗�(P)

= (c1p1,...,c1pD′ ,...,cDp1,...,cDpD′ )T,

where �(C,P) consists of all possible products of elements in feature
vectors �(C) and �(P), and thus is a D×D′ dimension binary
vector. Since �(C) and �(P) encode for chemical substructures and
protein domains, respectively, each element in �(C,P) corresponds
to a pair of a chemical substructure and a protein domain.

3.3 Binary classifiers
We apply two popular binary linear classifiers: logistic regression
and linear support vector machine (SVM). Models are typically
learned to minimize objective functions with a regularization for
both classifiers. It is well known that the use of regularization
is necessary to achieve a model that generalizes well to unseen
data, particularly if the dimension of features is very high relative
to the amount of training data. One common regularization is
L2-regularization which keeps most elements in the weight vector
to be non-zeros. Therefore, one can suffer from interpreting features
from learned weights. We shall, respectively, refer to L2-regularized
logistic regression and linear SVM as L2LOG and L2SVM.
Another possible regularization is L1-regularization that makes most
elements in the weight vector to be zeros. In this study, we introduce
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Fig. 1. Part of the extracted substructure–domain association network. Pink circle and blue rectangle represent a chemical substructure and a protein domain,
respectively. Node size represents a node degree. Edge width represents the weight of substructure and domain pair

logistic regression and linear SVM with L1-regularization for its
high interpretability.

Given a set of drug–target pairs and labels (�(Ci,Pi),yi),yi ∈
{+1,−1}, logistic regression and linear SVM are, respectively,
formulated by the following unconstrained optimization problems:

min
w

n∑

i=1

log(1+exp(−yiw
T�(Ci,Pi))), (1)

and

min
w

n∑

i=1

max{1−yiw
T�(Ci,Pi),0}. (2)

To enhance the interpretability of linear models, the weight vector
is optimized with L1-regularization as follows:

min
w

||w||1 +C
n∑

i=1

log(1+exp(−yiw
T�(Ci,Pi))), (3)

and

min
w

||w||1 +C
n∑

i=1

max{1−yiw
T�(Ci,Pi),0}, (4)

where ||·||1 is L1 norm (the sum of absolute values in the vector) and
C is a hyper-parameter. L1-regularization has an effect that makes the
weights of uninformative features zeros without loss of classification
accuracy. We shall refer to L1-regularized logistic regression and
linear SVM as L1LOG and L1SVM, respectively.

Learning weight vectors from high dimensional data is a difficult
problem. For drug–target interaction predictions, the dimension of
a feature vector �(C,P) tends to be very high. In our dataset,
the dimension of �(C,P) is 663×876=584103. To overcome this
difficulty, SVM with pairwise kernels was used in the previous works
(Faulon et al., 2008; Jacob and Vert, 2008), which is referred to
as Kernel-SVM (KSVM). However, it is difficult to apply KSVM
to large-scale interaction predictions. This is because the time
complexity of the quadratic programming problem for the KSVM is
O(n3

d ×n3
t ), where nd is the number of drugs and nt is the number of

target proteins, and even worse the space complexity is O(n2
d ×n2

t ),
which is just for storing the pairwise kernel matrix. Moreover,
KSVM does not have an interpretability of features.
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Table 1. Examples of extracted chemogenomic features by the L1LOG method

Rank Weight Substrucure ID PubChem substructure definition
Domain ID PFAM domain definition

1 2.1468 SUB158 >= 3 any ring size 5
1 2.1468 PF00106 short chain dehydrogenase

2 2.1118 SUB414 S(˜C)(˜H)
2 2.1118 PF00255 Glutathione peroxidase

3 1.9413 SUB158 >= 3 any ring size 5
3 1.9413 PF01126 Heme oxygenase

4 1.8035 SUB686 O=C-C-C-C-N
4 1.8035 PF01094 Receptor family ligand binding region

5 1.7707 SUB687 O=C-C-C-C-O
5 1.7707 PF03171 2OG-Fe(II), oxygenase superfamily

6 1.7514 SUB348 C(˜C)(˜H)(˜O)(˜O)
6 1.7514 PF03414 Glycosyltransferase family 6

7 1.6343 SUB387 C(:C)(:C)(:N)
7 1.6343 PF00042 Globin

8 1.6299 SUB409 O(˜H)(˜S)
8 1.6299 PF00167 Fibroblast growth factor

9 1.5807 SUB32 >= 2 P
9 1.5807 PF00348 Polyprenyl synthetase

10 1.5797 SUB567 O-C-C-N
10 1.5797 PF00464 Serine hydroxymethyltransferase

11 1.5105 SUB309 O-H
11 1.5105 PF00102 Protein-tyrosine phosphatase

12 1.5065 SUB433 C(-C)(-C)(=O)
12 1.5065 PF02518 Histidine kinase-, DNA gyrase B-, and HSP90-like ATPase

13 1.5033 SUB449 C(-H)(=O)
13 1.5033 PF00107 Zinc-binding dehydrogenase

14 1.4956 SUB695 O=C-C-C-C-C=O
14 1.4956 PF00551 Formyl transferase

15 1.4784 SUB433 C(-C)(-C)(=O)
15 1.4784 PF07884 Vitamin K epoxide reductase family

A crucial observation is that �(C,P) is a sparse binary
vector. For such sparse binary vectors, weight vectors can
be learned via efficient optimization algorithms (Hsieh et al.,
2008). The software is available from http://www.csie.ntu.
edu.tw/˜cjlin/liblinear/.

4 RESULTS

4.1 Extraction of chemogenomic features
We tested the feature extraction ability of five feature extraction
methods: L1LOG, L1SVM, L2LOG, L2SVM and SCCA. Note
that L1LOG and L1SVM are the proposed methods with
L1-regularization, L2LOG and L2SVM are the proposed methods
with L2-regularization and SCCAis the previous method (Yamanishi
et al., 2011). We extracted chemogenomic features that were
positively weighted in each method. The parameters in each method
(e.g. regularization parameters, sparsity parameters and number of
components) were optimized by performing cross-validation. (More
details of the cross-validation procedure will be explained in the next
subsection).

Each chemogenomic feature consists of a chemical substructure
and a protein domain which are suspected of being associated with
each other in terms of drug–target interactions. We evaluated the
strength of the association between chemical substructures and
protein domains by the corresponding weight in the classifier.
Figure 1 shows a global view of substructure–domain association
network behind the drug–target interaction network. We focused on
the maximal network component because of space limitation and
on chemical substructures and protein domains whose weights were
higher than 0.4 in the case of the L1SVM method for visualization
simplicity in the figure. Table 1 shows examples of highly weighted
chemogenomic features extracted by the L1LOG method. The result
of all extracted features in each method can be obtained from the
Supplementary Materials.

Figure 2 shows a comparison of the number of extracted features
between the five different feature extraction methods. In the case of
SCCA, we evaluated the association between chemical substructures
and protein domains by computing the product of their weight
elements between chemical substructures and protein domains
within each canonical component, and we took unique combinations
as chemogenomic features if they were present in different canonical
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Fig. 2. Comparison of the number of extracted features between different
methods

components. It was observed that L1LOG and L1SVM extracted
a very limited number of features, compared with other methods,
owing to the sparsity of the L1 penalty-based methods. This
allows meaningful analysis of the extracted features for biological
interpretation, which will be shown in the biological interpretation
subsection.

We examined the effect of the ratio of negative samples on the
number of extracted features in the case of L1LOG and L1SVM.
Figure 3 shows the number of extracted features against the ratio of
negative samples. We found a tendency that as the ratio of negative
samples increases, the number of features decreases in both L1LOG
and L1SVM.

We also examined the distribution of extracted features between
three feature extraction methods: L1LOG, L1SVM and SCCA,
where the number of negative examples was 10 times larger than
the number of positive examples. Figure 4 shows a Venn diagram
of the number of unique chemogenomic features across L1LOG,
L1SVM and SCCA. The numbers of extracted features by L1LOG
and L1SVM are much fewer than that by SCCA. This result suggests
that the L1-regularized classifier-approach enables us to reduce the
number of features, compared with the previous method.

4.2 Performance evaluation
If the extracted chemogenomic features are biologically meaningful
and capture relevant information with respect to protein–ligand
interactions, one would expect that they present good generalization
properties to reconstruct known drug–target interactions from the
extracted features. We tested the prediction performance of L1LOG,
L1SVM, L2LOG, L2SVM and SCCA. We also tested the prediction
performance of Kernel SVM (KSVM) (Faulon et al., 2008; Jacob
and Vert, 2008). Note that KSVM is the state-of-the-art method
for ligand–protein interaction prediction, but it cannot extract any
information about important molecular features nor provide any
biological interpretation since it only predicts interactions.
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Fig. 4. Distribution of the number of extracted features across different
feature extraction methods

We performed two types of cross-validations: pair-wise cross-
validation and block-wise cross-validation. In the pair-wise cross-
validation we performed the following 5-fold cross-validation. (i)
We randomly split drug-target pairs in the gold standard set into
five subsets of roughly equal sizes and took each subset in turn as
a test set. (ii) We trained a predictive model on the remaining four
subsets. (iii) We computed the prediction scores for drug–target pairs
in the test set. (iv) Finally, we evaluated the prediction accuracy
over the 5-folds. Pair-wise cross-validation assumes the situation
where we want to detect missing interactions between known
drugs (e.g. marketed drugs) and known target proteins (e.g. known
therapeutic targets) with information about interaction partners. In
the block-wise cross-validation we performed the following 5-fold
cross-validation. (i) We randomly split drugs and target proteins in
the gold standard set into five drug subsets and five target subsets,
and took each drug subset and each target subset in turn as test
sets. (ii) We trained a predictive model on drug–target pairs in
the remaining four drug subsets and four target subsets. (iii) We
computed the prediction scores for drug–target pairs involving test
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drug set and test target set. (iv) Finally, we evaluated the prediction
accuracy over the 5-folds. Block-wise cross-validation assumes the
situation where we want to predict unknown target proteins of
newly coming drug candidate compounds (e.g. newly synthesized
compounds) and unknown ligands of newly coming target candidate
proteins (e.g. orphan proteins).

We evaluated the performance by the receiver operating
characteristic (ROC) curve, which is a plot of true positives as
a function of false positives based on various thresholds, where
true positives are correctly predicted interactions and false positives
are predicted interactions that are not present in the gold standard
interactions. We summarized the performance by the area under the
ROC curve (AUC) score, where 1 is for a perfect inference and 0.5 is
for a random inference. We repeated the cross-validation experiment
five times, and computed the average of the AUC scores over the five
cross-validation folds. The parameters involved in the other methods
were optimized with the AUC score as the objective function.

Table 2 shows the AUC scores by the pair-wise cross-validation,
where the number of negative examples is varied from the same
number of positive examples to the number of all possible negative
examples. It was observed that all classifiers worked well when
there were many negative examples. However, KSVM did not
work with a large number of negative examples because of the
problem of memory shortage and computational cost in the training
process. It also seemed that the proposed methods L1SVM, L1LOG,
L2SVM and L2LOG outperformed the previous methods KSVM
and SCCA. SVM-based methods seemed to be better than LOG-
based methods in terms of AUC. The prediction accuracies of
L1-regularized methods was close to or slightly worse than that of
L2 regularized methods. These results suggest that L1-regularized
methods provide us with more selective drug substructures and
protein domains, without losing important information encoding
protein–ligand interactions.

Table 3 shows the AUC scores by the block-wise cross-validation,
where the number of negative examples is varied from the same
number of positive examples to the number of all possible negative
examples. In this case, the same effects of negative examples
were observed as those in the pair-wise cross-validation, but
there was little significant difference in the prediction accuracy
between different methods. The AUC scores in the block-wise cross-
validation were lower than those in the pair-wise cross-validation,
which implies that predicting unknown interactions for newly
coming drug candidate compounds and target candidate proteins
is much more difficult than detecting missing interactions between
known drugs and known target proteins. In practice, we found it
very difficult to analyze the extracted chemogenomic features when
there were too many highly or lowly weighted elements like L2LOG
and L2SVM. On the contrary, the advantage of L1-regularized
classifiers over L2-regularized classifiers is the ability to derive
biological interpretations, as shown on a few examples in the next
subsection.

4.3 Biological interpretation of extracted drug
substructures and protein domains

We examined the extracted drug substructures and protein domains
from biological viewpoints. Because of space limitation, we discuss
a few examples below by decreasing order in the weights in the case
of the L1LOG algorithm.

The first feature corresponds to PF00106 (short chain
dehydrogenase) and SUB158 (three or more ring of size 5).
This substructure is present in 34 molecules of the DrugBank,
and in particular in the NADH molecule (DB00157). Molecules
of the NADH/NAD+ couple are coenzymes found in all living
cells and are involved in redox reactions. Enzymes catalyzing
oxidation reactions use NAD+ as an oxidating agent, while enzymes
catalyzing reduction reactions use NADH as a reducing agent. The
PF0106 domain is found in a large number of NAD-dependent
oxydoreductases, such as estradiol 17-beta-deshydrogenase (P14061
at Uniprot) or 15-hydroxyprostaglandin dehydrogenase (P15428 at
Uniprot).

The second feature corresponds to PF00255 (glutathione
peroxidase) and SUB414 (a C-SH group, i.e. a thiol group).
Glutathione is a tripeptide that contains an unusual peptide linkage
between the amine group of a cystein and the carboxyl group of a
glutamate side chain (gammaGlu-Cys-Gly). The cystein residue of
glutathione contains the reductive S-H thiol group, and glutathione
is often noted G-SH. G-SH is one of the main antioxidant in
living cells, and the redox potential of cell compartments are
mainly adjusted by the proportion of its reduced form (G-SH)
and its oxidized form (G-S-S-G). Proteins with the glutathione
peroxidase domain PF00255 catalyse oxidation of G-SH into G-S-S-
G. Therefore, the association of the PF00255 domain to the SUB414
is quite consistent on a biological point of view.

The third feature corresponds to PF01126 (heme oxygenase)
and SUB158 (three or more ring of size 5). As in the case of
PF00106, proteins containing the heme oxygenase domain are
oxydoreductases that catalyse the degradation of heme, using
NADH/NAD+ as cofactors. This probably explains the extracted
association of PF01126 and SUB158.

The fifth feature corresponds to the association of PF03171
(oxygenase superfamily) and SUB687 (O=C-C-C-C-O). Enzymes
with the PF03171 domain are oxydoreductases that play a role in
various patways such as lysine degradation or DNA repair. Although
their functions might be very different, these enzymes all use iron
and vitamine C (DB00126) as cofactors. Vitamine C contains the
SUB687 chemical substructure, which might explain this feature.

The eighth feature corresponds to the association of PF00167
(fibroblast growth factor) and SUB409 (S-OH). Proteins with
the PF00167 domain bind heparin and play an important role
in the regulation of cell survival, division and differentiation.
Heparin is a highly sulfated glycosaminoglycan containing several
S-OH substructures. This substructure is also present in Pentosan
polyphosphate (DB00686), an heparin-like drug with anticoagulant
properties, that binds to fibroblast growth factors. DB00686 also
contain the S-OH substructure, which explains the corresponding
feature.

Taken together, the above analysis shows that the best ranked
features are biologically meaningful, which is an interesting result.
This shows that the proposed algorithms are able to extract the most
significant pairs of protein domains and chemical substructures that
drive protein-ligand interactions.

5 DISCUSSION AND CONCLUSION
In this article we proposed a novel method to identify the underlying
associations between drug chemical substructures and protein
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Table 2. AUC scores on pair-wise cross validation experiments

Ratio L1-Log L1-SVM L2-Log L2-SVM KSVM SCCA

1 0.8285±0.0009 0.8301±0.0006 0.8366±0.0010 0.8461±0.0009 0.8339±0.0005 0.7975±0.0018
5 0.8379±0.0008 0.8551±0.0008 0.8464±0.0008 0.8659±0.0008 NA 0.7975±0.0018
10 0.8437±0.0010 0.8654±0.0010 0.8512±0.0010 0.8728±0.0009 NA 0.7975±0.0018
50 0.8419±0.0010 0.8677±0.0009 0.8514±0.0011 0.8736±0.0010 NA 0.7975±0.0018
100 0.8418±0.0010 0.8677±0.0009 0.8516±0.0010 0.8740±0.0010 NA 0.7975±0.0018
ALL 0.8411±0.0006 0.8658±0.0006 0.8483±0.0007 0.8659±0.0004 NA 0.7975±0.0018

The number of negative examples is varied from the same number of positive examples to the number of all possible negative examples. NA means that it was not computationally
feasible.

Table 3. AUC scores on block-wise cross validation experiments

Ratio L1-Log L1-SVM L2-Log L2-SVM KSVM SCCA

1 0.7071±0.0010 0.7061±0.0015 0.7222±0.0009 0.7316±0.0011 0.7325±0.0006 0.7496±0.0042
5 0.7318±0.0004 0.7286±0.0007 0.7368±0.0005 0.7505±0.0005 NA 0.7496±0.0042
10 0.7254±0.0003 0.7339±0.0005 0.7370±0.0004 0.7479±0.0003 NA 0.7496±0.0042
50 0.7243±0.0004 0.7366±0.0004 0.7378±0.0005 0.7479±0.0004 NA 0.7496±0.0042
100 0.7244±0.0005 0.7352±0.0006 0.7361±0.0005 0.7496±0.0003 NA 0.7496±0.0042
ALL 0.7244±0.0004 0.7377±0.0006 0.7371±0.0005 0.7481±0.0004 NA 0.7496±0.0042

The number of negative examples is varied from the same number of positive examples to the number of all possible negative examples. NA means that it was not computationally
feasible.

domains in drug–target interaction networks, based on sparsity-
induced binary classifiers. The originality of the proposed method
lies in the use of all known protein–ligand interactions across
different protein families and the interpretability of the predictive
model.

Both our proposed L1-regularized classifiers and the previous
SCCA method are similar in that they induce sparsity into model
weights. Although SCCA introduces a sparsity into each canonical
component, many features are going to be extracted in total from
multiple canonical components, and the same protein domains
tend to appear in many different canonical components. Thus, one
can suffer from choosing biologically meaningful features from
a large number of extracted features. On the other hand, our
method successfully extracted a relatively small number of features,
which is beneficial for easier biological interpretation. However,
our L1-regularized classifiers can not completely replace SCCA,
because each canonical component of SCCA has its own biological
meaning. Such property of SCCA is useful when one wants to
associate a set of chemical substructures with a set of protein
domains.

The proposed method can be used, as soon as drug molecules
and target proteins can be represented by descriptors (chemical
substructures and protein domains in this study). However, a
limitation of the proposed method is that the performance depends
on the definition of chemical substructures of drugs and functional
domains of target proteins, so the model cannot generalize to
chemical substructures or protein domains absent from the learning
set. The use of more complete descriptors such as Daylight
and Dragon for drugs and other amino acid sequence properties
for proteins (Shen et al., 2007) may improve the generalization
properties of the method.
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